Anharmonic Phonon Lifetimes in Semiconductors from Density-Functional Perturbation Theory

Abstract
The anharmonic lifetimes of zone-center optical phonons in C, Si, and Ge are calculated along with their temperature and pressure dependences, using third-order density-functional perturbation theory. Our basic ingredients are by-products of a standard linear-response calculation of phonon dispersions in the harmonic approximation, resulting in a similarly good agreement with experiments. The microscopic mechanisms responsible for the decay are revealed and shown to be different for different materials and to depend sensitively on the applied pressure.