Abstract
The problem to minimize a convex function f over a closed convex set C on which it is subdifferentiable can be approached by methods of subgradient optimization. In this note, a simple condition is given under which a sequence generated by such a method is convergent if arid only if f attains its infimum over G. An answer to the question when this condition can be satisfied is given, too.

This publication has 2 references indexed in Scilit: