Simple learning rules to cope with changing environments
- 12 March 2008
- journal article
- research article
- Published by The Royal Society in Journal of The Royal Society Interface
- Vol. 5 (27) , 1193-1202
- https://doi.org/10.1098/rsif.2007.1348
Abstract
We consider an agent that must choose repeatedly among several actions. Each action has a certain probability of giving the agent an energy reward, and costs may be associated with switching between actions. The agent does not know which action has the highest reward probability, and the probabilities change randomly over time. We study two learning rules that have been widely used to model decision-making processes in animals—one deterministic and the other stochastic. In particular, we examine the influence of the rules' ‘learning rate’ on the agent's energy gain. We compare the performance of each rule with the best performance attainable when the agent has either full knowledge or no knowledge of the environment. Over relatively short periods of time, both rules are successful in enabling agents to exploit their environment. Moreover, under a range of effective learning rates, both rules are equivalent, and can be expressed by a third rule that requires the agent to select the action for which the current run of unsuccessful trials is shortest. However, the performance of both rules is relatively poor over longer periods of time, and under most circumstances no better than the performance an agent could achieve without knowledge of the environment. We propose a simple extension to the original rules that enables agents to learn about and effectively exploit a changing environment for an unlimited period of time.Keywords
This publication has 41 references indexed in Scilit:
- Should I stay or should I go? How the human brain manages the trade-off between exploitation and explorationPhilosophical Transactions Of The Royal Society B-Biological Sciences, 2007
- Learning Rules for Social Foragers: Implications for the Producer–Scrounger Game and Ideal Free Distribution TheoryJournal of Theoretical Biology, 2000
- Spatial patterning in resource exploitation and conservationPhilosophical Transactions Of The Royal Society B-Biological Sciences, 1994
- Dynamic information in uncertain and changing worldsJournal of Theoretical Biology, 1990
- Learning rules, matching and frequency dependenceJournal of Theoretical Biology, 1987
- Memory and the efficient use of informationJournal of Theoretical Biology, 1987
- Learning to forage in a variable environmentJournal of Theoretical Biology, 1986
- Optimal foraging and learningJournal of Theoretical Biology, 1985
- Probabilistic behaviour in ants: A strategy of errors?Journal of Theoretical Biology, 1983
- Learning the evolutionarily stable strategyJournal of Theoretical Biology, 1981