Adiabatic Compression of Soliton Matter Waves

Abstract
The evolution of atomic solitary waves in Bose-Einstein condensate (BEC) under adiabatic changes of the atomic scattering length is investigated. The variations of amplitude, width, and velocity of soliton are found for both spatial and time adiabatic variations. The possibility to use these variations to compress solitons up to very high local matter densities is shown both in absence and in presence of a parabolic confining potential.

This publication has 0 references indexed in Scilit: