Ringing revivals in the interaction of a two-level atom with squeezed light

Abstract
The Jaynes–Cummings interaction of a two-level atom with the radiation field is studied when the radiation is initially in a strongly squeezed coherent state. The dynamic response of the atomic inversion shows echoes after each revival when the squeezed coherent state exhibits an oscillatory photon-counting distribution due to the phase-space interference effect. The sensitivity of the dynamic behavior to approximations used in computing the atomic inversion is discussed. Comparison is made with the intensity-dependent interaction model of Buck and Sukumar [ Phys. Lett. 81A, 132 ( 1981)]; this model does not exhibit echoes. The mean, variance, and entropy for the photon-number distribution are calculated and found to show behavior similar to that of the atomic inversion.