Abstract
Let be a measure space and the usual Banach spaces. A linear operator T : LpLpis called a positive contraction if it transforms non-negative functions into non-negative functions and if its norm is not more than one. The purpose of this note is to show that if 1 < p < ∞ and if T : LpLp is a positive contraction then

This publication has 1 reference indexed in Scilit: