Abstract
An important event in the migration of lymphocytes out of the blood is their adherence to endothelial cells (EC). In inflammatory sites cytokines activate EC and promote lymphocyte EC adherence and migration. Small peritoneal exudate lymphocytes (sPEL) preferentially migrate from the blood to cutaneous delayed-type hypersensitivity reactions and to sites injected with IFN-gamma, IFN-alpha/beta, and TNF-alpha, rather than to peripheral lymph nodes. The basis of this migration is sPEL adherence to cytokine-activated EC. To study this adhesion mAb to rat sPEL were screened for inhibition of sPEL adherence to IFN-gamma-stimulated EC. One mAb, TA-2, inhibited IFN-gamma-stimulated adherence to EC by 60%. This antibody had no effect on the baseline adherence of sPEL to unstimulated EC. Treatment of sPEL, but not EC, with TA-2-inhibited adhesion. TA-2 also inhibited adhesion to EC activated with mIL-1 alpha, TNF-alpha, and LPS, and the adhesion of spleen T cells to activated EC. The TA-2 Ag was expressed on virtually all lymph node, spleen, and sPEL lymphocytes but sPEL expressed two to three times higher levels than lymph node lymphocytes, and the highest levels were found on CD4+ and CD45R- memory T cells. TA-2 immunoprecipitated a group of four polypeptides with molecular mass of 150, 130, 83, and 66 kDa. Finally, TA-2 inhibited sPEL adhesion to TNF-alpha and IL-1 stimulated human umbilical vein EC to the same extent as an anti-human VCAM-1 mAb, and combinations of TA-2 and anti-VCAM-1 were not different from treatment with either antibody alone. Thus, TA-2 appears to recognize rat VLA-4 based on immunoprecipitation, immunofluorescence, and lymphocyte EC studies. VLA-4 mediates the adhesion of rat lymphocytes to rat microvascular EC stimulated with IFN-gamma, mIL-1 alpha, TNF-alpha, and LPS. VLA-4 is important in the increased adhesion of sPEL to EC and the enhanced sPEL migration to inflammation may in part be explained by increased expression of VLA-4 on these cells.

This publication has 0 references indexed in Scilit: