Overlapping substrate specificities of benzaldehyde dehydrogenase (the xylC gene product) and 2-hydroxymuconic semialdehyde dehydrogenase (the xylG gene product) encoded by TOL plasmid pWW0 of Pseudomonas putida
- 1 March 1995
- journal article
- research article
- Published by American Society for Microbiology in Journal of Bacteriology
- Vol. 177 (5) , 1196-1201
- https://doi.org/10.1128/jb.177.5.1196-1201.1995
Abstract
Two aldehyde dehydrogenases involved in the degradation of toluene and xylenes, namely, benzaldehyde dehydrogenase and 2-hydroxymuconic semialdehyde dehydrogenase, are encoded by the xylC and xylG genes, respectively, on TOL plasmid pWW0 of Pseudomonas putida. The nucleotide sequence of xylC was determined in this study. A protein exhibiting benzaldehyde dehydrogenase activity had been purified from cells of P. putida (pWW0) (J. P. Shaw and S. Harayama, Eur. J. Biochem. 191:705-714, 1990); however, the amino-terminal sequence of this protein does not correspond to that predicted from the xylC sequence but does correspond to that predicted from the xylG sequence. The protein purified in the earlier work was therefore 2-hydroxymuconic semialdehyde dehydrogenase (the xylG gene product). This conclusion was confirmed by the fact that this protein oxidized 2-hydroxymuconic semialdehyde (kcat/Km = 1.6 x 10(6) s-1 M-1) more efficiently than benzaldehyde (kcat/Km = 3.2 x 10(4) s-1 M-1). The xylC product, the genuine benzaldehyde dehydrogenase, was purified from extracts of P. putida (pWW0-161 delta rylG) which does not synthesize 2-hydroxymuconic semialdehyde dehydrogenase. The amino-terminal sequence of the purified protein corresponds to the amino-terminal sequence deduced from the xylC sequence. This enzyme efficiently oxidized benzaldehyde (kcat/Km = 1.7 x 10(7) s-1 M-1) and its analogs but did not oxidize 2-hydroxymuconic semialdehyde or its analogs.Keywords
This publication has 23 references indexed in Scilit:
- CLUSTAL: a package for performing multiple sequence alignment on a microcomputerPublished by Elsevier ,2003
- DNA sequence determination of the TOL plasmid (pWW0) xylGFJ genes of Pseudomonas putida: implications for the evolution of aromatic catabolismMolecular Microbiology, 1991
- Probe mapping to facilitate transposon-based DNA sequencing.Proceedings of the National Academy of Sciences, 1990
- Purification and characterisation of TOL plasmid‐encoded benzyl alcohol dehydrogenase and benzaldehyde dehydrogenase of Pseudomonas putidaEuropean Journal of Biochemistry, 1990
- Purification of the benzyl alcohol dehydrogenase and benzaldehyde dehydrogenase encoded by the TOL plasmid pWW53 of Pseudomonas putida MT53 and their preliminary comparison with benzyl alcohol dehydrogenase and benzaldehyde dehydrogenases I and II from Acinetobacter calcoaceticusJournal of General Microbiology, 1990
- The TOL Plasmids: Determinants of the Catabolism of Toluene and the XylenesPublished by Elsevier ,1990
- Regulatory circuits controlling transcription of TOL plasmid operon encoding meta‐cleavage pathway for degradation of alkylbenzoates by PseudomonasMolecular Microbiology, 1987
- Molecular and functional analysis of the TOL plasmid pWWO from Pseudomonas putida and cloning of genes for the entire regulated aromatic ring meta cleavage pathway.Proceedings of the National Academy of Sciences, 1981
- A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye BindingAnalytical Biochemistry, 1976
- A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye bindingAnalytical Biochemistry, 1976