The Contribution of Lysosomal Trapping in the Uptake of Desipramine and Chloroquine by Different Tissues
- 1 December 1995
- journal article
- research article
- Published by Wiley in Basic & Clinical Pharmacology & Toxicology
- Vol. 77 (6) , 402-406
- https://doi.org/10.1111/j.1600-0773.1995.tb01050.x
Abstract
Cationic amphiphilic drugs strongly accumulate in tissues of different organs. Uptake is controlled by two major mechanisms, non‐specific binding to membrane phospholipids, and ion‐trapping within acidic cellular compartments. The aim of this study was to assess the individual contributions of these two mechanisms on the uptakein vitroof desipramine and chloroquine into tissue slices of control and desipramine‐treated rats. Drug uptake into intact slices was compared with uptake into slices with destroyed or non‐functional acidic compartments. The sequence of desipramine uptake by tissue slices of eight different organs was: lungs>brain>heart>diaphragm>kidneys>skeletal muscles>adipose tissue>liver. The low desipramine concentration in liver may be due to metabolism of the parent drug by cytochrome P‐450. Uptake of chloroquine differed widely between slices of different organs with the sequence: lungs>kidneys=brain=liver>diaphragm=heart=skeletal muscles>adipose tissue. Destruction or inactivation of the acidic compartments by homogenization and freeze‐thawing or by ammonium chloride, sodium fluoride, or monensin, reduced drug uptake to similar extents. The reduction was organ‐specific and may represent the size of the lysosomal compartment in the respective tissue cells. Uptake of chloroquine was more affected than that of desipramine, suggesting that ion‐trapping is the main factor for chloroquine accumulation, while binding to membrane phospholipids, is the main factor for desipramine uptake. Single or multiple‐dose treatments of rats with desipramine hardly had any effect on consecutive desipramine uptake into lung and liver slices, while the accumulation of chloroquine was enhanced in these slices. In conclusion, the extent of uptake of cationic amphiphilic drugs into tissue slices was tissue‐specific, and the contribution of the two uptake mechanisms was strongly drug‐dependent.Keywords
This publication has 10 references indexed in Scilit:
- Prediction of Drug Distribution in Distribution Dialysis and In Vivo from Binding to Tissues and BloodJournal of Pharmaceutical Sciences, 1993
- Adipose Tissue Distribution and Chemical Structure of Basic Lipophilic Drugs: Desipramine, N‐Acetyl Desipramine, and HaloperidolBasic & Clinical Pharmacology & Toxicology, 1992
- The potential role of lysosomes in tissue distribution of weak basesBiopharmaceutics & Drug Disposition, 1988
- Role of Lysosomes in Hepatic Accumulation of ChloroquineJournal of Pharmaceutical Sciences, 1988
- In Vitro Binding of Chloroquine to Rat Muscle PreparationsJournal of Pharmaceutical Sciences, 1986
- Distribution of chlorpromazine and imipramine in adipose and other tissues of ratsLife Sciences, 1983
- Inhibition of phospholipid degradation and changes of the phospholipid-pattern by desipramine in cultured human fibroblastsBiochemical Pharmacology, 1983
- Evidence for lysosomotropic action of desipramine in cultured human fibroblasts.The Journal of Pharmacology and Experimental Therapeutics, 1983
- Verbessertes Gerät zur Gleichgewichts-DialyseAnalytical and Bioanalytical Chemistry, 1970
- Spectrophotometric and Potentiometric Evaluation of Apparent Acid Dissociation Exponents of Various 4-Aminoquinoline˙s1Journal of the American Chemical Society, 1947