Abstract
There is much interest in rule extraction from neural networks and a plethora of different methods have been proposed for this purpose. We discuss the merits of pedagogical and decompositional approaches to rule extraction from trained neural networks, and show that some currently used methods for binary data comply with a theoretical formalism for extraction of Boolean rules from continuously valued logic. This formalism is extended into a generic methodology for rule extraction from smooth decision surfaces fitted to discrete or quantized continuous variables independently of the analytical structure of the underlying model, and in a manner that is efficient even for high input dimensions. This methodology is then tested with Monks' data, for which exact rules are obtained and to Wisconsin's breast cancer data, where a small number of high-order rules are identified whose discriminatory performance can be directly visualized.

This publication has 13 references indexed in Scilit: