Abstract
We study the intersection type assignment system as defined by Barendregt, Coppo and Dezani. For the four essential variants of the system (with and without a universal type and with and without subtyping) we show that the emptiness (inhabitation) problem is recursively unsolvable. That is, there is no effective algorithm to decide if there is a closed term of a given type. It follows that provability in the logic of “strong conjunction” of Mints and Lopez-Escobar is also undecidable.

This publication has 14 references indexed in Scilit: