The Extratropical Signal Generated by a Midlatitude SST Anomaly. Part I: Sensitivity at Equilibrium
Open Access
- 1 May 2001
- journal article
- Published by American Meteorological Society in Journal of Climate
- Vol. 14 (9) , 2035-2053
- https://doi.org/10.1175/1520-0442(2001)014<2035:tesgba>2.0.co;2
Abstract
A simple GCM (SGCM) is constructed by adding empirically derived time-independent forcing terms to a dry primitive equation model. This yields a model with realistic time-mean jets and storm tracks. The SGCM is then used to study the equilibrium response to an imposed heating anomaly in the midlatitude Pacific, meant to represent an anomaly in the sea surface temperature. Using the SGCM’s own climatology as a basic state, the same model is then used to find the time-independent linear response to the same heating anomaly. The difference between the two responses is clearly attributed to the forcing due to anomalous transient eddies. The sensitivity of the response to the strength and vertical profile of the heating, and to the presence of the wind speed in the surface flux parameterization, is explored. It is found that for a reasonable range of heating amplitude the transient eddy forcing is proportional to the heating and the responses to heating and cooling are almost antisymmetric. The antisymmetry breaks down at large amplitude. The vertical profile of heating has a small but systematic effect on the response: deeper heating leads to stronger equivalent barotropic features. The inclusion of wind speed in the surface flux parameterization alters the response mainly by virtue of altering the basic model climatology, rather than by any local effect on the heating. The position of the heating anomaly is varied in both latitude and longitude to gain insight into the possible effects of systematic errors in GCMs. The time-independent linear response tends to move with the heating, but the eddy-driven nonlinear part remains relatively fixed and varies only in amplitude. The heating perturbation slightly modifies the first empirical orthogonal function of the model’s internal low frequency variability. The response projects strongly onto this pattern and the probability distribution function of the projection is significantly skewed.Keywords
This publication has 0 references indexed in Scilit: