Disk Formation by AGB Winds in Dipole Magnetic Fields
Preprint
- 8 August 2000
Abstract
We present a simple, robust mechanism by which an isolated star can produce an equatorial disk. The mechanism requires that the star have a simple dipole magnetic field on the surface and an isotropic wind acceleration mechanism. The wind couples to the field, stretching it until the field lines become mostly radial and oppositely directed above and below the magnetic equator, as occurs in the solar wind. The interaction between the wind plasma and magnetic field near the star produces a steady outflow in which magnetic forces direct plasma toward the equator, constructing a disk. In the context of a slow (10 km/s) outflow (10^{-5} M_sun/yr) from an AGB star, MHD simulations demonstrate that a dense equatorial disk will be produced for dipole field strengths of only a few Gauss on the surface of the star. A disk formed by this model can be dynamically important for the shaping of Planetary Nebulae.Keywords
All Related Versions
- Version 1, 2000-08-08, ArXiv
- Published version: The Astrophysical Journal, 545 (2), 965.
This publication has 0 references indexed in Scilit: