Abstract
In this paper we propose a feasible way to price American options in a model with time-varying volatility and conditional skewness and leptokurtosis, using GARCH processes and the Normal Inverse Gaussian distribution. We show how the risk-neutral dynamics can be obtained in this model, we interpret the effect of the risk-neutralization, and we derive approximation procedures which allow for a computationally efficient implementation of the model. When the model is estimated on financial returns data the results indicate that compared to the Gaussian case the extension is important. A study of the model properties shows that there are important option pricing differences compared to the Gaussian case as well as to the symmetric special case. A large scale empirical examination shows that our model out-performs the Gaussian case for pricing options on the three large US stocks as well as a major index. In particular, improvements are found when it comes to explaining the smile in implied standard deviations.

This publication has 28 references indexed in Scilit: