Hydrolysis of (1,4)-β-D-mannans in barley (Hordeum vulgare L.) is mediated by the concerted action of (1,4)-β-D-mannan endohydrolase and β-D-mannosidase
- 13 September 2006
- journal article
- Published by Portland Press Ltd. in Biochemical Journal
- Vol. 399 (1) , 77-90
- https://doi.org/10.1042/bj20060170
Abstract
A family GH5 (family 5 glycoside hydrolase) (1,4)-β-D-mannan endohydrolase or β-D-mannanase (EC 3.2.1.78), designated HvMAN1, has been purified 300-fold from extracts of 10-day-old barley (Hordeum vulgare L.) seedlings using ammonium sulfate fractional precipitation, followed by ion exchange, hydrophobic interaction and size-exclusion chromatography. The purified HvMAN1 is a relatively unstable enzyme with an apparent molecular mass of 43 kDa, a pI of 7.8 and a pH optimum of 4.75. The HvMAN1 releases Man (mannose or D-mannopyranose)-containing oligosaccharides of degree of polymerization 2–6 from mannans, galactomannans and glucomannans. With locust-bean galactomannan and mannopentaitol as substrates, the enzyme has Km constants of 0.16 mg·ml−1 and 5.3 mM and kcat constants of 12.9 and 3.9 s−1 respectively. Product analyses indicate that transglycosylation reactions occur during hydrolysis of (1,4)-β-D-manno-oligosaccharides. The complete sequence of 374 amino acid residues of the mature enzyme has been deduced from the nucleotide sequence of a near full-length cDNA, and has allowed a three-dimensional model of the HvMAN1 to be constructed. The barley HvMAN1 gene is a member of a small (1,4)-β-D-mannan endohydrolase family of at least six genes, and is transcribed at low levels in a number of organs, including the developing endosperm, but also in the basal region of young roots and in leaf tips. A second barley enzyme that participates in mannan depolymerization through its ability to hydrolyse (1,4)-β-D-manno-oligosaccharides to Man is a family GH1 β-D-mannosidase, now designated HvβMANNOS1, but previously identified as a β-D-glucosidase [Hrmova, MacGregor, Biely, Stewart and Fincher (1998) J. Biol. Chem. 273, 11134–11143], which hydrolyses 4NP (4-nitrophenyl) β-D-mannoside three times faster than 4NP β-D-glucoside, and has an action pattern typical of a (1,4)-β-D-mannan exohydrolase.Keywords
This publication has 49 references indexed in Scilit:
- Gene expression patterns and catalytic properties of UDP-D-glucose 4-epimerases from barley (Hordeum vulgare L.)Biochemical Journal, 2006
- Endo-β-mannanase and β-mannosidase activities in rice grains during and following germination, and the influence of gibberellin and abscisic acidSeed Science Research, 2005
- Three‐dimensional structure of (1,4)‐β‐d‐mannan mannanohydrolase from tomato fruitProtein Science, 2005
- Variation in Its C-Terminal Amino Acids Determines Whether Endo-β-Mannanase Is Active or Inactive in Ripening Tomato Fruits of Different CultivarsPlant Physiology, 2002
- Barley arabinoxylan arabinofuranohydrolases: purification, characterization and determination of primary structures from cDNA clonesBiochemical Journal, 2001
- T-coffee: a novel method for fast and accurate multiple sequence alignment 1 1Edited by J. ThorntonJournal of Molecular Biology, 2000
- Gapped BLAST and PSI-BLAST: a new generation of protein database search programsNucleic Acids Research, 1997
- β‐Glucosidase, β‐galactosidase, family A cellulases, family F xylanases and two barley glycanases form a superfamily of enzymes wit 8‐fold β/α architecture and with two conserved glutamates near the carboxy‐terminal ends of β‐strands four and sevenFEBS Letters, 1995
- Comparative Protein Modelling by Satisfaction of Spatial RestraintsJournal of Molecular Biology, 1993
- Sodium Borohydride as a Reducing Agent in the Sugar Series1Journal of the American Chemical Society, 1952