The collected works of john w. tukey

Abstract
We describe novel, analytical, data-analysis, and Monte-Carlo-simulation studies of strongly heteroscedastic data of both small and wide range.Many different types of heteroscedasticity and fixed or variable weighting are incorporated through error-variance models.Attention is given to parameter bias determinations, evaluations of their significances, and to new ways to correct for bias.The error-variance models allow for both additive and independent power-law errors, and the power exponent is shown to be able to be well determined for typical physicalsciences data by the rapidly-converging, general-purpose, extended-least-squares program we use.The fitting and error-variance models are applied to both low-and high-heteroscedasticity situations, including single-response data from radioactive decay.Monte-Carlo simulations of data with similar parameters are used to evaluate the analytical models developed and the various minimization methods em-ployed, such as extended and generalized least squares.Logarithmic and inversion transformations are investigated in detail, and it is shown analytically and by simulations that exponential data with constant percentage errors can be logarithmically transformed to allow a simple parameter-bias-removal procedure.A more-general bias-reduction approach combining direct and inversion fitting is also developed.Distributions of fitting-model and error-variance-model parameters are shown to be typically non-normal, thus invalidating the usual estimates of parameter bias and precision.Errors in conventional confidence-interval estimates are quantified by comparison with accurate simulation results.

This publication has 19 references indexed in Scilit: