Peaked-MMF smooth-torque reluctance motors

Abstract
The authors investigate the steady-state torque characteristics of reluctance motors with nonsalient stator punchings, but with peaked rotating magnetomotive forces (MMFs). The torque calculation includes the effects of saturation and fringing and groove fluxes. The peaked rotating MMF is produced by properly coordinated current waveforms and winding. Peaked-MMF reluctance motors have tow major advantages: the torque is smooth and the flux per pole required to produce a given torque is lower than that of conventional reluctance motors. This property is most beneficial to two-pole reluctance motors, for a given frame whose bore diameters and slot areas can be increased significantly for higher ratings or better performance. Unlike switched reluctance motors, shaft encoders are not required for peaked-MMF motors.

This publication has 4 references indexed in Scilit: