Abstract
I review the classical and quantum properties of the (2+1)-dimensional black hole of Ba{\~n}ados, Teitelboim, and Zanelli. This solution of the Einstein field equations in three spacetime dimensions shares many of the characteristics of the Kerr black hole: it has an event horizon, an inner horizon, and an ergosphere; it occurs as an endpoint of gravitational collapse; it exhibits mass inflation; and it has a nonvanishing Hawking temperature and interesting thermodynamic properties. At the same time, its structure is simple enough to allow a number of exact computations, particularly in the quantum realm, that are impractical in 3+1 dimensions.