Abstract
A model of phenotypic stabilising selection in which the fitness of an individual depends solely on its phenotype, and not directly on its genetic constitution, is explored algebraically for a system of two linked loci of unequal effect. It is found that selection for metric deviation gives rise to polymorphic gamete-frequency equilibria for a variety of fitness regimes. Stability of non-trivial equilibria occurs for a wide range of parameter sets. Stability is facilitated by close linkage and inequality between gene effects. It is suggested that, in general, genetic variation may be maintained under stabilising selection when the fitness of double heterozygotes exceeds that of the phenotypically intermediate homozygotes.