Probabilistic Predictions of Precipitation Using the ECMWF Ensemble Prediction System

Abstract
The forecast skill of the European Centre for Medium-Range Weather Forecasts Ensemble Prediction System (EPS) in predicting precipitation probabilities is discussed. Four seasons are analyzed in detail using signal detection theory and reliability diagrams to define objective measure of predictive skill. First, the EPS performance during summer 1997 is discussed. Attention is focused on Europe and two European local regions, one centered around the Alps and the other around Ireland. Results indicate that for Europe the EPS can give skillful prediction of low precipitation amounts [i.e., lower than 2 mm (12 h)−1] up to forecast day 6, and of high precipitation amounts [i.e., between 2 and 10 mm (12 h)−1] up to day 4. Lower levels of skill are achieved for smaller local areas. Then, the EPS performance during summer 1996 (i.e., prior to the enhancement introduced on 10 December 1996 from 33 to 51 members and to resolution increase from T63 L19 to TL159 L31) and summer 1997 are compared. Results sho... Abstract The forecast skill of the European Centre for Medium-Range Weather Forecasts Ensemble Prediction System (EPS) in predicting precipitation probabilities is discussed. Four seasons are analyzed in detail using signal detection theory and reliability diagrams to define objective measure of predictive skill. First, the EPS performance during summer 1997 is discussed. Attention is focused on Europe and two European local regions, one centered around the Alps and the other around Ireland. Results indicate that for Europe the EPS can give skillful prediction of low precipitation amounts [i.e., lower than 2 mm (12 h)−1] up to forecast day 6, and of high precipitation amounts [i.e., between 2 and 10 mm (12 h)−1] up to day 4. Lower levels of skill are achieved for smaller local areas. Then, the EPS performance during summer 1996 (i.e., prior to the enhancement introduced on 10 December 1996 from 33 to 51 members and to resolution increase from T63 L19 to TL159 L31) and summer 1997 are compared. Results sho...

This publication has 0 references indexed in Scilit: