Abstract
The spatiotemporal characteristics of the dopaminergic transmission mediated by D1 receptors were investigatedin vivo. For this purpose dopamine (DA) release was evoked in the striatum of anesthetized rats by train electrical stimulations of the medial forebrain bundle (one to four pulses at 15 Hz), which mimicked the spontaneous activity of dopaminergic neurons. The resulting dopamine overflow was electrochemically monitored in real time in the extracellular space. This evoked DA release induced a delayed increase in discharge activity in a subpopulation of single striatal neurons. This excitation was attributable to stimulation of D1 receptors by released DA because it was abolished by acute 6-hydroxydopamine lesion and strongly reduced by the D1 antagonist SCH 23390. Striatal neurons exhibiting this delayed response were also strongly excited by intravenous administration of the D1 agonist SKF 82958. Whereas the DA overflow was closely time-correlated with stimulation, the excitatory response mediated by DA started 200 msec after release and lasted for up to 1 sec. Moreover, functional evidence presented here combined with previous morphological data show that D1 receptors are stimulated by DA diffusing up to 12 μm away from release sites in the extrasynaptic extracellular space. In conclusion, DA released by bursts of action potentials exerts, via D1 receptors, a delayed and prolonged excitatory influence on target neurons. This phasic transmission occurs outside synaptic clefts but still exhibits a high degree of spatial specificity.