An endoplasmic reticulum retention signal in the CD3ɛ chain of the T-cell receptor

Abstract
Isolated polypeptide chains of the T-cell antigen receptor complex are degraded or retained in the endoplasmic reticulum (ER). Assembly of the multisubunit complex allows the individual chains to escape retention in the ER and to be expressed on the cell surface. We engineered a series of deletions in the CD3 epsilon subunit of the human T-cell receptor in order to find the sequences responsible for its retention in the ER. Deletion of amino acids 171 to 180 in the cytosolic tail resulted in the cell-surface expression of the isolated chain. This sequence also promotes retention when it is appended to CD4, a plasma membrane protein. Mutagenesis of the 10-amino-acid CD3 epsilon sequence established that the tyrosine and serine residues are important for ER retention. This and other ER retention signals must be hidden when a complete T-cell receptor complex is assembled in order to allow its expression on the cell surface.