An Estimate of the Chemical and Radiative Perturbation of Stratospheric Ozone Following the Eruption of Mt. Pinatubo
Open Access
- 1 October 1993
- journal article
- Published by American Meteorological Society in Journal of the Atmospheric Sciences
- Vol. 50 (19) , 3260-3276
- https://doi.org/10.1175/1520-0469(1993)050<3260:aeotca>2.0.co;2
Abstract
In this work a numerical assessment is attempted of trace species interactions with aerosols injected in the stratosphere by the eruption of Mt. Pinatubo. A photochemical two-dimensional model is used for this purpose, with heterogeneous chemical conversion of odd nitrogen into nitric acid taken as the basic perturbation on nitrogen, chlorine, and ozone. In addition, it is shown that the radiative perturbation induced by the aerosols is an important depletion mechanism for ozone at least at tropical latitudes where the optical thickness of volcanic particles has remained sufficiently high for several months after the eruption. The radiative interaction with stratospheric trace species not only takes place through changes in photodissociation frequency but is also a consequence of solar and planetary radiation absorption by the aerosol particles. The resulting heating rates produce a nonnegligible equatorial upwelling whose effects on dynamics and transport have been studied using a three-dimensio... Abstract In this work a numerical assessment is attempted of trace species interactions with aerosols injected in the stratosphere by the eruption of Mt. Pinatubo. A photochemical two-dimensional model is used for this purpose, with heterogeneous chemical conversion of odd nitrogen into nitric acid taken as the basic perturbation on nitrogen, chlorine, and ozone. In addition, it is shown that the radiative perturbation induced by the aerosols is an important depletion mechanism for ozone at least at tropical latitudes where the optical thickness of volcanic particles has remained sufficiently high for several months after the eruption. The radiative interaction with stratospheric trace species not only takes place through changes in photodissociation frequency but is also a consequence of solar and planetary radiation absorption by the aerosol particles. The resulting heating rates produce a nonnegligible equatorial upwelling whose effects on dynamics and transport have been studied using a three-dimensio...Keywords
This publication has 0 references indexed in Scilit: