Structure Function Scaling in Compressible Super-Alfvenic MHD Turbulence
Preprint
- 1 June 2004
Abstract
Supersonic turbulent flows of magnetized gas are believed to play an important role in the dynamics of star-forming clouds in galaxies. Understanding statistical properties of such flows is crucial for developing a theory of star formation. In this letter we propose a unified approach for obtaining the velocity scaling in compressible and super--Alfv\'{e}nic turbulence, valid for arbitrary sonic Mach number, \ms. We demonstrate with numerical simulations that the scaling can be described with the She--L\'{e}v\^{e}que formalism, where only one parameter, interpreted as the Hausdorff dimension of the most intense dissipative structures, needs to be varied as a function of \ms. Our results thus provide a method for obtaining the velocity scaling in interstellar clouds once their Mach numbers have been inferred from observations.Keywords
All Related Versions
This publication has 0 references indexed in Scilit: