On the average-case complexity of selecting k-th best

Abstract
Let Vk (n) be the minimum average number of pairwise comparisons needed to find the k-th largest of n numbers (k≥2), assuming that all n! orderings are equally likely. D. W. Matula proved that, for some absolute constant c, Vk(n)- n ≤ ck log log n as n → ∞. In the present paper, we show that there exists an absolute constant c′ ≫ 0 such that Vk(n) - n ≥ c′k log log n as n → ∞, proving a conjecture by Matula.

This publication has 3 references indexed in Scilit: