On Algebraic Construction of Gallager and Circulant Low-Density Parity-Check Codes

Abstract
This correspondence presents three algebraic methods for constructing low-density parity-check (LDPC) codes. These methods are based on the structural properties of finite geometries. The first method gives a class of Gallager codes and a class of complementary Gallager codes. The second method results in two classes of circulant-LDPC codes, one in cyclic form and the other in quasi-cyclic form. The third method is a two-step hybrid method. Codes in these classes have a wide range of rates and minimum distances, and they perform well with iterative decoding.

This publication has 28 references indexed in Scilit: