Infinite Quantum Group Symmetry of Fields in Massive 2D Quantum Field Theory
Preprint
- 20 August 1991
Abstract
Starting from a given S-matrix of an integrable quantum field theory in $1+1$ dimensions, and knowledge of its on-shell quantum group symmetries, we describe how to extend the symmetry to the space of fields. This is accomplished by introducing an adjoint action of the symmetry generators on fields, and specifying the form factors of descendents. The braiding relations of quantum field multiplets is shown to be given by the universal $\CR$-matrix. We develop in some detail the case of infinite dimensional Yangian symmetry. We show that the quantum double of the Yangian is a Hopf algebra deformation of a level zero Kac-Moody algebra that preserves its finite dimensional Lie subalgebra. The fields form infinite dimensional Verma-module representations; in particular the energy-momentum tensor and isotopic current are in the same multiplet.
Keywords
All Related Versions
This publication has 0 references indexed in Scilit: