Collisionless electrostatic interchange instabilities

Abstract
The linear Vlasov dispersion equation for electrostatic plasma instabilities driven by gravity and weak density gradients perpendicular to a uniform magnetic field is derived and solved numerically. Two interchange instabilities emerge: the well-known fluid mode at long wavelengths and a kinetic mode at wavelengths short compared with the ion gyroradius. The properties of both instabilities are studied, as well as the effects of gravity on the universal and lower-hybrid density drift instabilities. The results show that the kinetic interchange generally has a larger growth rate than the fluid interchange instability, indicating that, whenever the latter is present in a collisionless plasma, the former may also be found.