Abstract
Stem cells, one of the progenitors of cancer, exist predominately in a quiescent state. Thus, understanding the mechanisms of DNA repair and mutagenesis in such arrested cells may help unravel the complex process of tumorigenesis. Two major nucleotide excision repair (NER) pathways are known to remove bulky physical or chemical lesions from DNA. Transcription-coupled repair (TCR) acts solely on the transcribed strand of expressed genes, while global genomic repair (GGR) is responsible for the ubiquitous repair of the genome. Indirectly, it has been shown that while TCR functions in quiescent cells GGR does not. To explicitly elucidate this phenomenon, we adapted a quantitative PCR (QPCR) assay to study UV-damage repair via TCR and GGR in quiescent and proliferating cells. We present evidence that repair of untranscribed silent regions of the genome and repair of the non-transcribed strand of active genes proceeds by two discrete mechanisms in quiescent cells; rather than by GGR, which was believed to encompass both. Thus, our findings suggest the existence of an alternate NER pathway in quiescent cells. The proposed subcategories of NER are as follows: (i) TCR, responsible for maintenance of transcribed strands; (ii) GGR, responsible for ubiquitous genome repair; and (iii) non-transcribed strand repair (NTSR), predominantly responsible for the repair of the NTS in arrested cells. In quiescent cells, it is evident that TCR and NTSR function and GGR are arrested. As a consequence, mutation accumulation at temporally silent genes and incomplete or imperfect repair of transcribed genes, in quiescent stem cells, may provide a source of cancer causing mutations.