Sol−Gel Monolithic Columns with Reversed Electroosmotic Flow for Capillary Electrochromatography

Abstract
Sol-gel chemistry was used to prepare porous monolithic columns for capillary electrochromatography. The developed sol-gel approach proved invaluable and generates monolithic columns in a simple and rapid manner. Practically any desired column length ranging from a few tens of centimeters to a few meters may be readily obtained. The incorporation of the sol-gel precursor, N-octadecyldimethyl[3-(trimethoxysilyl)propyl]ammonium chloride, into the sol solution proved to be critical as this reagent possesses an octadecyl moiety that allows for chromatographic interactions of analytes with the monolithic stationary phase. Additionally, this reagent served to yield a positively charged surface, thereby providing the relatively strong reversed electroosmotic flow (EOF) in capillary electrochromatography. The enhanced permeability of the monolithic capillaries allowed for the use of such columns without the need for modifications to the commercial CE instrument. There was no need to pressurize both capillary ends during operation or to use high pressures for column rinsing. With the developed procedure, no bubble formation was detected during analysis with the monolithic capillaries when using electric field strengths of up to 300 V cm(-1). The EOF in the monolith columns was found to be dependent on the percentage of organic modifier present in the mobile phase. Separation efficiencies of up to 1.75 x 10(5) plates/m (87,300 plates/column) were achieved on a 50 cm x 50 microm i.d. column using polycyclic aromatic hydrocarbons and aromatic aldehydes and ketones as test solutes.

This publication has 50 references indexed in Scilit: