The Experimental Determination of Squeeze-Film Dynamic Coefficients Using the State Variable Filter Method of Parametric Identification
- 1 April 1989
- journal article
- Published by ASME International in Journal of Tribology
- Vol. 111 (2) , 252-259
- https://doi.org/10.1115/1.3261901
Abstract
The state variable filter method of parametric identification is applied in the determination of squeeze-film dynamic coefficients from forced excitation tests on an experimental rig. The experimental squeeze-film damper had a centralizing spring, a central circumferential oil feed groove, and no end seals. Forced excitation tests are recorded at various journal support system natural frequencies and at different journal eccentricities. From these tests, estimates of the direct squeeze-film damping, stiffness and inertial coefficients are derived and presented. These results are shown to be in good agreement with results recently obtained using an independent frequency domain technique. The experimental damping and inertial coefficients were found to be considerably larger than values predicted by conventional short-bearing theory, but relatively insensitive to the support system’s natural frequency (and the forcing frequency) for most of the range investigated. The fluid film stiffness coefficient values at low values of the system’s natural frequency agreed with results from static stiffness tests. Two geometrically identical journals were used, one of steel and one of a low-weight, magnesium alloy. The use of the low weight journal markedly reduced the scatter in the inertial and film stiffness coefficients.Keywords
This publication has 0 references indexed in Scilit: