Alkaline Hydrolysis of the Cyclic Nitramine Explosives RDX, HMX, and CL-20: New Insights into Degradation Pathways Obtained by the Observation of Novel Intermediates
- 29 March 2003
- journal article
- research article
- Published by American Chemical Society (ACS) in Environmental Science & Technology
- Vol. 37 (9) , 1838-1843
- https://doi.org/10.1021/es020959h
Abstract
Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX, I) and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) hydrolyze at pH > 10 to form end products including NO2-, HCHO, HCOOH, NH3, and N2O, but little information is available on intermediates, apart from the tentatively identified pentahydro-3,5-dinitro-1,3,5-triazacyclohex-1-ene (II). Despite suggestions that RDX and HMX contaminated groundwater could be economically treated via alkaline hydrolysis, the optimization of such a process requires more detailed knowledge of intermediates and degradation pathways. In this study, we hydrolyzed the monocyclic nitramines RDX, MNX (hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine), and HMX in aqueous solution (pH 10−12.3) and found that nitramine removal was accompanied by formation of 1 molar equiv of nitrite and the accumulation of the key ring cleavage product 4-nitro-2,4-diazabutanal (4-NDAB, O2NNHCH2NHCHO). Most of the remaining C and N content of RDX, MNX, and HMX was found in HCHO, N2O, HCOOH, and NH3. Consequently, we selected RDX as a model compound and hydrolyzed it in aqueous acetonitrile solutions (pH 12.3) in the presence and absence of hydroxypropyl-β-cyclodextrin (HP-β-CD) to explore other early intermediates in more detail. We observed a transient LC-MS peak with a [M−H] at 192 Da that was tentatively identified as 4,6-dinitro-2,4,6-triaza-hexanal (O2NNHCH2NNO2CH2NHCHO, III) considered as the hydrolyzed product of II. In addition, we detected another novel intermediate with a [M−H] at 148 Da that was tentatively identified as a hydrolyzed product of III, namely, 5-hydroxy-4-nitro-2,4-diaza-pentanal (HOCH2NNO2CH2NHCHO, IV). Both III and IV can act as precursors to 4-NDAB. In the case of the polycyclic nitramine 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20), denitration (two NO2-) also led to the formation of HCOOH, NH3, and N2O, but neither HCHO nor 4-NDAB were detected. The results provide strong evidence that initial denitration of cyclic nitramines in water is sufficient to cause ring cleavage followed by spontaneous decomposition to form the final products.Keywords
This publication has 25 references indexed in Scilit:
- Photodegradation of RDX in Aqueous Solution: A Mechanistic Probe for Biodegradation with Rhodococcus sp.Environmental Science & Technology, 2002
- Determination of Key Metabolites during Biodegradation of Hexahydro-1,3,5-Trinitro-1,3,5-Triazine with Rhodococcus sp. Strain DN22Applied and Environmental Microbiology, 2002
- Hexahydro-1,3,5-trinitro-1,3,5-triazine Mineralization by Zerovalent Iron and Mixed Anaerobic CulturesEnvironmental Science & Technology, 2001
- Chronic toxicity of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) in soil determined using the earthworm ( Eisenia andrei ) reproduction testEnvironmental Pollution, 2000
- Type I nitroreductases in soil enterobacteria reduce TNT (2,4,6-trinitrotoluene) and RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine)Canadian Journal of Microbiology, 2000
- Aerobic biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) as a nitrogen source by a Rhodococcus sp., strain DN22Soil Biology and Biochemistry, 1998
- DEGRADATION OF RDX BY VARIOUS ADVANCED OXIDATION PROCESSES: II. ORGANIC BY-PRODUCTSWater Research, 1998
- Thermal decomposition of energetic materials. 2. Deuterium isotope effects and isotopic scrambling in condensed-phase decomposition of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocineThe Journal of Physical Chemistry, 1991
- Conception for the investigation of contaminated munition plantsAnalytical and Bioanalytical Chemistry, 1990
- Infrared multiphoton dissociation of RDX in a molecular beamThe Journal of Chemical Physics, 1988