Some neuronal properties of PC12 cells differentiated by the K-ras oncogene

Abstract
When infected with a virus containing the Kirsten-ras oncogene, rat phaeochromocytoma or PC12 cells elaborated neurites and ceased mitosis, that is, they underwent neuronal differentiation. Such differentiated cells could be replated and maintained up to 20 weeksin vitro without the need of an exogenous, continuous supply of nerve growth factor (NGF). The neurites of K-ras infected PC12 cells, filled with microtubules and actin which was concentrated within the growth cones, resembled those of primary neuronsin vitro. As in the NGF-primed PC12 cells, two types of secretory vesicles were present in the K-ras-infected PC12 neurites: large (100 nm), dense core granules, and small (45 nm), clear vesicles. Compared to naive PC12 cells, K-ras infected PC12 cells had (a) higher activities of acetylcholinesterase and choline acetyltransferase, two enzymes involved in acetylcholine metabolism; (b) enhanced activity of tyrosine hydroxylase, the rate-limiting enzyme in catecholamine biosynthesis; (c) a higher, evoked norepinephrine release; and (d) similar levels of sodium-dependent uptake of both choline and norepinephrine. Although the total content of catecholamines in K-ras-differentiated PC12 cells was less than that of naïve cells, both norepinephrine and dopamine were present in substantial amounts and norepinephrine was released after stimulation. According to their enzymatic activity, these cells can also synthesize acetylcholine and thus have potential as donors for the intracerebral replacement of either catecholaminergic or cholinergic neurotransmitters.