Functionally Distinct Groups of Interneurons Identified During Rhythmic Carbachol Oscillations in HippocampusIn Vitro

Abstract
During distinct behavioral states, the hippocampus exhibits characteristic rhythmic electrical activity. Evidence in vivo suggests that both principal pyramidal cells and GABAergic interneurons participate in generating oscillations. We found that during rhythmic oscillations in area CA3, functionally distinct classes of interneurons could be identified, although all recorded interneurons had similar dendritic and axonal arbors. One group of interneurons was powerfully excited by CA3 pyramidal cells, whereas two other interneuron groups were relatively unaffected by pyramidal cell firing. One of these groups of interneurons was potently inhibited by other local interneurons during the pyramidal cell bursts. Our findings emphasize that morphologically similar cells are wired together very differently within the local circuit. The classes of hippocampal interneurons we have tentatively defined may be used during distinct behavioral states to switch the local network from one oscillatory state to another.