Hard Thermal Loops, Static Response and the Composite Effective Action
Preprint
- 7 March 1994
Abstract
First, we investigate the static non-Abelian Kubo equation. We prove that it does not possess finite energy solutions; thereby we establish that gauge theories do not support hard thermal solitons. A similar argument shows that "static" instantons are absent. In addition, we note that the static equations reproduce the expected screening of the non-Abelian electric field by a gauge invariant Debye mass m=gT sqrt((N+N_F/2)/3). Second, we derive the non-Abelian Kubo equation from the composite effective action. This is achieved by showing that the requirement of stationarity of the composite effective action is equivalent, within a kinematical approximation scheme, to the condition of gauge invariance for the generating functional of hard thermal loops.Keywords
All Related Versions
This publication has 0 references indexed in Scilit: