A scalable parallel cell-projection volume rendering algorithm for three-dimensional unstructured data
- 20 October 1997
- proceedings article
- Published by Association for Computing Machinery (ACM)
Abstract
Visualizing three-dimensional unstructured data from aerodynamics calculations is challenging because the associated meshes are typically large in size and irregular in both shape and resolution. The goal of this research is to develop a fast, efficient parallel volume rendering algorithm for massively parallel distributed-memory supercomputers consisting of a large number of very powerful processors. We use cell-projection instead of ray-casting to provide maximum flexibility in the data distribution and rendering steps. Effective static load balancing is achieved with a round robin distribution of data cells among the processors. A spatial partitioning tree is used to guide the rendering, optimize the image compositing step, and reduce memory consumption. Communication cost is reduced by buffering messages and by overlapping communication with rendering calculations as much as possible. Tests on the IBM SP2 demonstrate that these strategies provide high rendering rates and good scalability. For a dataset containing half a million tetrahedral cells, we achieve two frames per second for a 400x400-pixel image using 128 processors.Keywords
This publication has 13 references indexed in Scilit:
- Splatting of non rectilinear volumes through stochastic resamplingPublished by Institute of Electrical and Electronics Engineers (IEEE) ,1996
- Parallel volume ray-casting for unstructured-grid data on distributed-memory architecturesPublished by Association for Computing Machinery (ACM) ,1995
- Volumetric ray tracingPublished by Association for Computing Machinery (ACM) ,1994
- Scalable parallel volume raycasting for nonrectilinear computational gridsPublished by Association for Computing Machinery (ACM) ,1993
- Raytracing irregular volume dataACM SIGGRAPH Computer Graphics, 1990
- A polygonal approximation to direct scalar volume renderingACM SIGGRAPH Computer Graphics, 1990
- Area and volume coherence for efficient visualization of 3D scalar functionsACM SIGGRAPH Computer Graphics, 1990
- Efficient ray tracing of volume dataACM Transactions on Graphics, 1990
- Oct-trees and their use in representing three-dimensional objectsComputer Graphics and Image Processing, 1980
- Multidimensional binary search trees used for associative searchingCommunications of the ACM, 1975