Recent developments of induction motor drives fault diagnosis using AI techniques
Top Cited Papers
- 1 October 2000
- journal article
- Published by Institute of Electrical and Electronics Engineers (IEEE) in IEEE Transactions on Industrial Electronics
- Vol. 47 (5) , 994-1004
- https://doi.org/10.1109/41.873207
Abstract
This paper presents a review of the developments in the field of diagnosis of electrical machines and drives based on artificial intelligence (AI). It covers the application of expert systems, artificial neural networks (ANNs), and fuzzy logic systems that can be integrated into each other and also with more traditional techniques. The application of genetic algorithms is considered as well. In general, a diagnostic procedure starts from a fault tree developed on the basis of the physical behavior of the electrical system under consideration. In this phase, the knowledge of well-tested models able to simulate the electrical machine in different fault conditions is fundamental to obtain the patterns characterizing the faults. The fault tree navigation performed by an expert system inference engine leads to the choice of suitable diagnostic indexes, referred to a particular fault, and relevant to build an input data set for specific AI (NNs, fuzzy logic, or neuro-fuzzy) systems. The discussed methodologies, that play a general role in the diagnostic field, are applied to an induction machine, utilizing as input signals the instantaneous voltages and currents. In addition, the supply converter is also considered to incorporate in the diagnostic procedure the most typical failures of power electronic components. A brief description of the various AI techniques is also given; this highlights the advantages and the limitations of using AI techniques. Some applications examples are also discussed and areas for future research are also indicated.Keywords
This publication has 28 references indexed in Scilit:
- A NEW METHOD OF CURRENT-BASED CONDITION MONITORING IN INDUCTION MACHINES OPERATING UNDER ARBITRARY LOAD CONDITIONSElectric Machines & Power Systems, 1997
- On the design and control of mechatronic systems-a surveyIEEE Transactions on Industrial Electronics, 1996
- Using a neural/fuzzy system to extract heuristic knowledge of incipient faults in induction motors. Part I-MethodologyIEEE Transactions on Industrial Electronics, 1995
- Neural networks aided on-line diagnostics of induction motor rotor faultsIEEE Transactions on Industry Applications, 1995
- Fault mode single-phase operation of a variable frequency induction motor drive and improvement of pulsating torque characteristicsIEEE Transactions on Industrial Electronics, 1994
- Investigation of fault modes of voltage-fed inverter system for induction motor driveIEEE Transactions on Industry Applications, 1994
- ANFIS: adaptive-network-based fuzzy inference systemIEEE Transactions on Systems, Man, and Cybernetics, 1993
- Diamond-Coated Laminations for High-Performance MotorsElectric Machines & Power Systems, 1992
- A neural network approach to real-time condition monitoring of induction motorsIEEE Transactions on Industrial Electronics, 1991
- Remedial strategies for brushless DC drive failuresIEEE Transactions on Industry Applications, 1990