Integration of hydraulic and chemical signalling in the control of stomatal conductance and water status of droughted plants
- 1 May 1993
- journal article
- Published by Wiley in Plant, Cell & Environment
- Vol. 16 (4) , 341-349
- https://doi.org/10.1111/j.1365-3040.1993.tb00880.x
Abstract
We describe here an integration of hydraulic and chemical signals which control stomatal conductance of plants in drying soil, and suggest that such a system is more likely than control based on chemical signals or water relations alone. The determination of xylem [ABA] and the stomatal response to xylem [ABA] are likely to involve the water flux through the plant. (1) If, as seems likely, the production of a chemical message depends on the root water status (Ψr), it will not depend solely on the soil water potential (Ψs) but also on the flux of water through the soil‐plant‐atmosphere continuum, to which are linked the difference between Ψr and Ψs. (2) The water flux will also dilute the concentration of the message in the xylem sap. (3) The stomatal sensitivity to the message is increased as leaf water potential falls. Stomatal conductance, which controls the water flux, therefore would be controlled by a water‐flux‐dependent message, with a water‐flux‐dependent sensitivity. In such a system, we have to consider a common regulation for stomatal conductance, leaf and root water potentials, water flux and concentration of ABA in the xylem. In order to test this possibility, we have combined equations which describe the generation and effects of chemical signals and classical equations of water flux. When the simulation was run for a variety of conditions, the solution suggested that such common regulation can operate. Simulations suggest that, as well as providing control of stomatal conductance, integration of chemical and hydraulic signalling may also provide a control of leaf water potential and of xylem [ABA], features which are apparent from our experimental data. We conclude that the root message would provide the plant with a means to sense the conditions of water extraction (soil water status and resisance to water flux) on a daily timescale, while the short‐term plant response to this message would depend on the evaporative demand.Keywords
This publication has 45 references indexed in Scilit:
- Some plant factors controlling evapotranspirationAgricultural and Forest Meteorology, 1991
- Antitranspirant Activity in Xylem Sap of Maize PlantsJournal of Experimental Botany, 1991
- Daily and seasonal courses of leaf conductance and abscisic acid in the xylem sap of almond trees [Prunus dulcis (Miller) D. A. Webb] under desert conditionsNew Phytologist, 1990
- Long Distance Transport of Abscisic Acid in NaCI-Treated Intact Plants ofLupinus albusJournal of Experimental Botany, 1990
- Tansley Review No. 22 What becomes of the transpiration stream?New Phytologist, 1990
- Sequential response of whole plant water relations to prolonged soil drying and the involvement of xylem sap ABA in the regulation of stomatal behaviour of sunflower plantsNew Phytologist, 1989
- Etude de quelques critères indicateurs de l'état hydrique d'une culture de tomate en région semi-arideAgronomy for Sustainable Development, 1988
- INDICATORS OF WATER STRESS IN CORN (Zea mays L.)Canadian Journal of Plant Science, 1984
- Hydraulic Resistance of Plants. I. Constant or Variable?Functional Plant Biology, 1984
- THE EFFECT OF ABSCISIC ACID ON STOMATAL BEHAVIOUR IN FLACCA, A WILTY MUTANT OF TOMATO, IN DARKNESSNew Phytologist, 1972