On the Physical Origin of OviAbsorption‐Line Systems

Abstract
We present a unified analysis of the O{\sc vi} absorption-lines seen in the disk and halo of the Milky Way, high velocity clouds, the Magellanic Clouds, starburst galaxies, and the intergalactic medium. We show that these disparate systems define a simple relationship between the O{\sc vi} column density and absorption-line width that is independent of the Oxygen abundance over the range O/H $\sim$ 10% to twice solar. We show that this relation is exactly that predicted theoretically as a radiatively cooling flow of hot gas passes through the coronal temperature regime - independent of its density or metallicity (for O/H $\gtrsim$ 0.1 solar). Since most of the intregalactic O{\sc vi} clouds obey this relation, we infer that they can not have metallicities less than a few percent solar. In order to be able to cool radiatively in less than a Hubble time, the intergalactic clouds must be smaller than $\sim$1 Mpc in size. We show that the cooling column densities for the O{\sc iv}, O{\sc v}, Ne{\sc v}, and Ne{\sc vi} ions are comparable to those seen in O{\sc vi}. This is also true for the Li-like ions Ne{\sc viii}, Mg{\sc x}, and Si{\sc xii} (if the gas is cooling from $T \gtrsim 10^6$ K). All these ions have strong resonance lines in the extreme-ultraviolet spectral range, and would be accessible to $FUSE$ at $z \gtrsim$ 0.2 to 0.8. We also show that the Li-like ions can be used to probe radiatively cooling gas at temperatures an order-of-magnitude higher than where their ionic fraction peaks. We calculate that the H-like (He-like) O, Ne, Mg, Si, and S ions have cooling columns of $\sim10^{17}$ cm$^{-2}$. The O{\sc vii}, O{\sc viii}, and Ne{\sc ix} X-ray absorption-lines towards PKS 2155-304 may arise in radiatively cooling gas in the Galactic disk or halo.Comment: 25 pages, 5 figure
All Related Versions