Abstract
Extracellular electric fields have been proposed as a mechanism for electrical coupling between excitable cells. This study deals with the extracellular potential produced by an isolated excitable spherical cell due to a traveling depolarization wave on the cell's surface. Both uniform and nonuniform propagation velocity profiles are considered. Using boundary element methods, the extracellular potential was computed. The polarity of the extracellular potential was found to be space-dependent. The peak extracellular potential increased when a) the propagation velocity decreased, b) the rise time of the depolarization decreased, and c) the extracellular resistivity increased.

This publication has 12 references indexed in Scilit: