Characterization of cochlear outer hair cell turgor

Abstract
The cochlear outer hair cell (OHC) is a cylindrical cell with structural features suggestive of a hydraulic skeleton, i.e., an elastic shell with a positive internal pressure. This study characterizes the role of the OHC elevated cytoplasmic pressure in maintaining the cell shape. Intracellular pressure of OHCs from guinea pig is estimated by measuring changes in cell morphology in response to increasing or decreasing osmolarity. Cells collapse when subjected to a continuous increase in osmolarity. Collapse occurs at an average of 8 mosM above the standard medium, suggesting that normal cells have an effective intracellular pressure of 128 mmHg. Fewer cells collapse when exposed to slow rates of osmolarity increase than cells exposed to fast rates of osmolarity increase, although the final change in osmolarity in the perfusion chamber is similar. Furthermore, cells undergo a slow, spontaneous increase in volume on exposure to either no osmolarity change or slow rates of osmolarity increase, suggesting that the cell's internal osmolarity increases in vitro. After volume reduction or elevation, cells do not return to their initial volume.