Maillard Reaction in Milk-Based Foods: Nutritional Consequences

Abstract
Chemical reactions occurring during industrial treatments or storage of foods can lead to the formation of ϵ-deoxyketosyl compounds, the Amadori products. Food protein value can be adversely affected by these reactions, and in particular lysine, an essential amino acid having on its side chain a free amino group, can be converted to nonbioavailable N-substituted lysine or blocked lysine. By acid hydrolysis of ϵ-deoxyketosyl compounds, furosine is formed. In this paper furosine prepared from milk-based commercial products has been evaluated by use of a recently developed HPLC method using a microbore column and phosphate buffer as the mobile phase at controlled temperature. Furosine levels have been used, together with protein, total amino acids, and lysine content, as an estimate of protein quality of a few different products such as cooked-cream dessert, yogurt mousse, white chocolate, milk chocolate, milk chocolate with a soft nougat and caramel center, milk chocolate with a whipped white center, chocolate spread, part-skim milk tablets, milk-based dietetic meals, and baby foods. The protein content of the analyzed products ranged from 34.3 g · kg−1 (milk nougat) to 188.4 g · kg−1 (milk tablets). The Maillard reaction caused a loss in available lysine that varied from 2.5% (cooked cream) to 36.2% (condensed milk). The contribution to the lysine average daily requirement is heavily affected by this reaction and varied from 13% (milk tablets and soft nougat) to 61% (dietetic meal). Variable results were also obtained for the other essential amino acids.

This publication has 0 references indexed in Scilit: