Peripheral Infusion of IGF-I Selectively Induces Neurogenesis in the Adult Rat Hippocampus
Top Cited Papers
Open Access
- 15 April 2000
- journal article
- Published by Society for Neuroscience in Journal of Neuroscience
- Vol. 20 (8) , 2896-2903
- https://doi.org/10.1523/jneurosci.20-08-02896.2000
Abstract
In several species, including humans, the dentate granule cell layer (GCL) of the hippocampus exhibits neurogenesis throughout adult life. The ability to regulate adult neurogenesis pharmacologically may be of therapeutic value as a mechanism for replacing lost neurons. Insulin-like growth factor-I (IGF-I) is a growth-promoting peptide hormone that has been shown to have neurotrophic properties. The relationship between IGF-I and adult hippocampal neurogenesis is to date unknown. The aim of this study was to investigate the effect of the peripheral administration of IGF-I on cellular proliferation in the dentate subgranular proliferative zone, which contains neuronal progenitor cells, and on the subsequent migration and differentiation of progenitor cells within the GCL. Using bromodeoxyuridine (BrdU) labeling, we found a significant increase of BrdU-immunoreactive progenitors in the GCL after 6 d of peripheral IGF-I administration. To determine the cell fate in progenitor progeny, we characterized the colocalization of BrdU-immunolabeled cells with cell-specific markers. In animals treated with IGF-I for 20 d, BrdU-positive cells increased significantly. Furthermore, the fraction of newly generated neurons in the GCL increased, as evaluated by the neuronal markers Calbindin D28K, microtubule-associated protein-2, and NeuN. There was no difference in the fraction of newly generated astrocytes. Thus, our results show that peripheral infusion of IGF-I increases progenitor cell proliferation and selectively induces neurogenesis in the progeny of adult neural progenitor cells. This corresponds to a 78 ± 17% (p < 0.001) increase in the number of new neurons in IGF-I-treated animals compared with controls.Keywords
This publication has 67 references indexed in Scilit:
- Insulin-like growth factor-1 is a radial cell-associated neurotrophin that promotes neuronal recruitment from the adult songbird ependyma/subependymaJournal of Neurobiology, 1998
- In vivo actions of insulin-like growth factor-I (IGF-I) on cerebellum development in transgenic mice: evidence that IGF-I increases proliferation of granule cell progenitorsDevelopmental Brain Research, 1996
- Autocrine—paracrine Regulation of Hippocampal Neuron Survival by IGF‐1 and the Neurotrophins BDNF, NT‐3 and NT‐4European Journal of Neuroscience, 1996
- Gonadal and adrenal steroids regulate neurochemical and structural plasticity of the hippocampus via cellular mechanisms involving NMDA receptorsCellular and Molecular Neurobiology, 1996
- IGF-1 influences olfactory bulb maturation. Evidence from anti-IGF-1 antibody treatment of developing grafts in oculoDevelopmental Brain Research, 1995
- Adult neurogenesis is regulated by adrenal steroids in the dentate gyrusNeuroscience, 1994
- BUdR as an S-phase marker for quantitative studies of cytokinetic behaviour in the murine cerebral ventricular zoneJournal of Neurocytology, 1992
- A role for IGF-1 in the rescue of CNS neurons following hypoxic-ischemic injuryBiochemical and Biophysical Research Communications, 1992
- Growth hormone regulation of insulin-like growth factor-I mRNA in rat adipose tissue and isolated rat adipocytesJournal of Endocrinology, 1991
- Bromodeoxyuridine immunohistochemical determination of the lengths of the cell cycle and the DNA-synthetic phase for an anatomically defined populationJournal of Neurocytology, 1989