Abstract
Based on a novel first class algebra, we develop an extension of the pure spinor (PS) formalism of Berkovits, in which the PS constraints are removed. By using the homological perturbation theory in an essential way, the BRST-like charge $Q$ of the conventional PS formalism is promoted to a bona fide nilpotent charge $\hat{Q}$, the cohomology of which is equivalent to the constrained cohomology of $Q$. This construction requires only a minimum number (five) of additional fermionic ghost-antighost pairs and the vertex operators for the massless modes of open string are obtained in a systematic way. Furthermore, we present a simple composite "$b$-ghost" field $B(z)$ which realizes the important relation $T(z) = \{\hat{Q}, B(z)\} $, with $T(z)$ the Virasoro operator, and apply it to facilitate the construction of the integrated vertex. The present formalism utilizes U(5) parametrization and the manifest Lorentz covariance is yet to be achieved.

This publication has 0 references indexed in Scilit: