The Neuroscience of Spatial Navigation: Focus on Behavior Yields Advances

Abstract
The development of the water maze as a laboratory approach to the study of spatial navigation has led to a large amount of research on the brain mechanisms of this ecologically important behavior. The procedural simplicity of this task belies its underlying complexity, which can complicate the interpretation of data obtained with the standard water maze procedure. In this review, recent experiments that used novel training procedures and detailed analyses of behavior are evaluated, together with related experiments, to clarify the brain mechanisms involved in this behavior. Pharmacological, lesion, and unit recording experiments demonstrate the existence of forebrain circuits for spatial navigation that are considerably more varied and extensive than was previously proposed, and involve various extrahippocampal structures. The use of novel and specialized procedures, together with a continued detailed focus on the behavior of animals in the maze, appears to be the most promising approach to understanding the mechanisms of spatial navigation.