Algèbres enveloppantes quantifiées, groupes quantiques compacts de matrices et calcul différentiel non commutatif
- 1 August 1990
- journal article
- Published by Duke University Press in Duke Mathematical Journal
- Vol. 61 (1) , 11-40
- https://doi.org/10.1215/s0012-7094-90-06102-2
Abstract
No abstract availableThis publication has 10 references indexed in Scilit:
- Differential calculus on compact matrix pseudogroups (quantum groups)Communications in Mathematical Physics, 1989
- Quantum orthogonal and symplectic groups and their embedding into quantum $GL$Proceedings of the Japan Academy, Series A, Mathematical Sciences, 1989
- Finite dimensional representations of the quantum analog of the enveloping algebra of a complex simple Lie algebraCommunications in Mathematical Physics, 1988
- The Yang-Baxter equation and invariants of linksInventiones Mathematicae, 1988
- Quantum deformations of certain simple modules over enveloping algebrasAdvances in Mathematics, 1988
- Tannaka-Krein duality for compact matrix pseudogroups. TwistedSU(N) groupsInventiones Mathematicae, 1988
- Compact matrix pseudogroupsCommunications in Mathematical Physics, 1987
- Twisted $\textit{SU}(2)$ Group. An Example of a Non-Commutative Differential CalculusPublications of the Research Institute for Mathematical Sciences, 1987
- A q-analogue of U(g[(N+1)), Hecke algebra, and the Yang-Baxter equationLetters in Mathematical Physics, 1986
- Aq-difference analogue of U(g) and the Yang-Baxter equationLetters in Mathematical Physics, 1985