Ca-sensitive sodium absorption in the colon of Xenopus laevis

Abstract
Transepithelial electrogenic Na transport (INa) was investigated in the colon of the frog Xenopus laevis with electrophysiological methods in vitro. The short circuit current (Isc) of the voltage-clamped tissue was 24.2±1.8 μA·cm-2 (n=10). About 60% of this current was generated by electrogenic Na transport. Removal of Ca2+ from the mucosal Ringer solution stimulated INa by about 120%. INa was not blockable by amiloride (0.1 mmol·l-1), a specific Na-channel blocker in epithelia, but a fully and reversible inhibition was achieved by mucosal application of 1 mmol·l-1 lanthanum (La3-). No Na-self-inhibition was found, because INa increased linearly with the mucosal Na concentration. A stimulation of INa by antidiuretic hormones was not possible. The analysis of fluctuations in the short circuit current (noise analysis) indicated that Na ions pass the apical cell membrane via a Ca-sensitive ion channel. The results clearly demonstrate that in the colon of Xenopus laevis Na ions are absorbed through Ca-sensitive apical ion channels. They differ considerably in their properties and regulation from the amiloride-sensitive Na channel which is “typically” found in the colon of vertebrates.