Series study of percolation moments in general dimension
- 1 May 1990
- journal article
- research article
- Published by American Physical Society (APS) in Physical Review B
- Vol. 41 (13) , 9183-9206
- https://doi.org/10.1103/physrevb.41.9183
Abstract
Series expansions for general moments of the bond-percolation cluster-size distribution on hypercubic lattices to 15th order in the concentration have been obtained. This is one more than the previously published series for the mean cluster size in three dimensions and four terms more for higher moments and higher dimensions. Critical exponents, amplitude ratios, and thresholds have been calculated from these and other series by a variety of independent analysis techniques. A comprehensive summary of extant estimates for exponents, some universal amplitude ratios, and thresholds for percolation in all dimensions is given, and our results are shown to be in excellent agreement with the ε expansion and some of the most accurate simulation estimates. We obtain threshold values of 0.2488±0.0002 and 0.180 25±0.000 15 for the three-dimensional bond problem on the simple-cubic and body-centered-cubic lattices, respectively, and 0.160 05±0.000 15 and 0.118 19±0.000 04, for the hypercubic bond problem in four and five dimensions, respectively. Our direct exponent estimates are γ=1.805±0.02, 1.435±0.015, and 1.185±0.005, and β=0.405±0.025, 0.639±0.020, and 0.835±0.005 in three, four, and five dimensions, respectively.Keywords
This publication has 64 references indexed in Scilit:
- Dilute spin glass at zero temperature in general dimensionPhysical Review B, 1989
- The fractal dimension and other percolation exponents in four and five dimensionsJournal of Physics A: General Physics, 1985
- Conductivity exponents from the analysis of series expansions for random resistor networksJournal of Physics A: General Physics, 1985
- A second look at a controversial percolation exponent?Is ? negative in three dimensions?Zeitschrift für Physik B Condensed Matter, 1984
- Nonlinear scaling fields and corrections to scaling near criticalityPhysical Review B, 1983
- Series study of random percolation in three dimensionsJournal of Physics A: General Physics, 1983
- New method for analyzing confluent singularities and its application to two-dimensional percolationPhysical Review B, 1982
- Phase diagram for three-dimensional correlated site-bond percolationZeitschrift für Physik B Condensed Matter, 1981
- Scaling studies of percolation phenomena in systems of dimensionality two to seven: Cluster numbersPhysical Review B, 1980
- On the random-cluster modelPhysica, 1972