Ice-Shelf Flow at the Boundary of Crary Ice Rise, Antarctica

Abstract
Surface velocity and deformation, radar sounding, and aerial photography data are used to describe the flow of Ross Ice Shelf around Crary Ice Rise. A continuous band of crevasses around the ice rise now allows the complete boundary to be mapped for the first time. The dynamics of three distinctly different areas of ice flow are studied. Just up-stream of the ice rise, there is a region of ice rumples dominated by intense longitudinal compression (0.01 a−1) and lateral tension. On the south-west side of the ice rise, intense shear (0.03 a−1) dominates, with the boundary layer of affected ice-shelf motion extending over 20 km from the ice-rise edge into the ice shelf. North-west of the ice rise, a crevasse-free block of ice, 40 km × 7 km, appears to have separated from the main ice rise and is now moving with the ice shelf. We refer to such moving blocks of ice as rafts. The separation of this raft is calculated to have occurred 20 ± 10 years ago. Other possible rafts are identified, including one on the south-west side of the ice rise which appears to be in the process of separating. Mechanisms for the formation of rafts are discussed.