Properties of an optical soliton gas

Abstract
We consider light pulses propagating in an optical fiber ring resonator with anomalous dispersion. New pulses are fed into the resonator in synchronism with its round-trip time. We show that solitary pulse shaping leads to a formation of an ensemble of subpulses that are identified as solitons. All solitons in the ensemble are in perpetual relative motion like molecules in a fluid; thus we refer to the ensemble as a soliton gas. Properties of this soliton gas are determined numerically.